Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Allergy Clin Immunol Glob ; 2(2): 100091, 2023 May.
Article in English | MEDLINE | ID: covidwho-2290697

ABSTRACT

Background: Immunodeficient patients (IDPs) are at higher risk of contracting severe coronavirus disease 2019 (COVID-19). Targeted vaccination strategies have been implemented to enhance vaccine-induced protection. In this population, however, clinical effectiveness is variable and the duration of protection unknown. Objective: We sought to better understand the cellular and humoral immune responses to mRNA and adenoviral vectored COVID-19 vaccines in patients with immunodeficiency. Methods: Immune responses to severe acute respiratory syndrome coronavirus 2 spike were assessed after 2 doses of homologous ChAdOx1-nCoV-19 or BNT162b2 vaccines in 112 infection-naive IDPs and 131 healthy health care workers as controls. Predictors of vaccine responsiveness were investigated. Results: Immune responses to vaccination were low, and virus neutralization by antibody was not detected despite high titer binding responses in many IDPs. In those exhibiting response, the frequency of specific T-cell responses in IDPs was similar to controls, while antibody responses were lower. Sustained vaccine specific differences were identified: T-cell responses were greater in ChAdOx1-nCoV-19- compared to BNT162b2-immunized IDPs, and antibody binding and neutralization were greater in all cohorts immunized with BNT162b2. The positive correlation between T-cell and antibody responses was weak and increased with subsequent vaccination. Conclusion: Immunodeficient patients have impaired immune responses to mRNA and viral vector COVID-19 vaccines that appear to be influenced by vaccine formulation. Understanding the relative roles of T-cell- and antibody-mediated protection as well as the potential of heterologous prime and boost immunization protocols is needed to optimize the vaccination approach in these high-risk groups.

2.
Cell reports ; 2023.
Article in English | EuropePMC | ID: covidwho-2257201

ABSTRACT

In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum. Graphical Dijokaite-Guraliuc et al. analyse potently neutralizing antibodies from vaccinated individuals with BA.2 breakthrough infections. The antibodies bind 3 sites on the receptor binding domain, 2 in common with early pandemic antibodies. Mutations in more recent variants map closely to these sites leading to reduced neutralization in all but one mAb.

3.
Frontiers in immunology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2253824

ABSTRACT

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.

4.
The journal of allergy and clinical immunology Global ; 2023.
Article in English | EuropePMC | ID: covidwho-2248236

ABSTRACT

Background Immunodeficient patients (IDPs) are at higher risk of contracting severe COVID-19 disease. Targeted vaccination strategies have been implemented to enhance vaccine-induced protection. In this population however, clinical effectiveness is variable and duration of protection unknown. Objective To understand the cellular and humoral immune responses to mRNA and adenoviral vectored COVID-19 vaccines in patients with immunodeficiency. Methods Immune responses to SARS-COV-2 spike were assessed after two doses of homologous ChAdOx1-nCoV-19 or BNT162b2 vaccines in 112 infection-naïve IDPs and 131 healthy health care workers (HCWs) as controls. Predictors of vaccine responsiveness were investigated. Results Immune responses to vaccination were low, and viral neutralisation by antibody not detected despite high titre binding responses in many IDPs. In those responding, the frequency of specific T-cell responses in IDPs was similar to controls whilst antibody responses were lower. Sustained vaccine specific differences were identified: T-cell responses were greater in ChAdOx1-nCoV-19 compared with BNT162b2 immunised IDPs and antibody binding and neutralisation was greater in all cohorts immunised with BNT162b2. The positive correlation between T-cell and antibody responses was weak and increased with subsequent vaccination. Conclusion Immunodeficient patients have impaired immune responses to mRNA and viral vector COVID-19 vaccines that appear influenced by vaccine formulation. Understanding the relative roles of T-cell and antibody mediated protection and potential of heterologous prime and boost immunization protocols is needed to optimise the vaccination approach in these high-risk groups. We demonstrate impaired T-cell and B-cell responses to SARS-CoV-2 vaccination in immunodeficient patients compared with the healthy population and highlight the need for tailoring booster vaccine approaches for immunodeficient individuals.

5.
Sci Rep ; 13(1): 4648, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2263196

ABSTRACT

SARS-CoV-2 continues to circulate in the human population necessitating regular booster immunization for its long-term control. Ideally, vaccines should ideally not only protect against symptomatic disease, but also prevent transmission via asymptomatic shedding and cover existing and future variants of the virus. This may ultimately only be possible through induction of potent and long-lasting immune responses in the nasopharyngeal tract, the initial entry site of SARS-CoV-2. To this end, we have designed a vaccine based on recombinantly expressed receptor binding domain (RBD) of SARS-CoV-2, fused to the C-terminus of C. perfringens enterotoxin, which is known to target Claudin-4, a matrix molecule highly expressed on mucosal microfold (M) cells of the nasal and bronchial-associated lymphoid tissues. To further enhance immune responses, the vaccine was adjuvanted with a novel toll-like receptor 3/RIG-I agonist (Riboxxim™), consisting of synthetic short double stranded RNA. Intranasal prime-boost immunization of mice induced robust mucosal and systemic anti-SARS-CoV-2 neutralizing antibody responses against SARS-CoV-2 strains Wuhan-Hu-1, and several variants (B.1.351/beta, B.1.1.7/alpha, B.1.617.2/delta), as well as systemic T-cell responses. A combination vaccine with M-cell targeted recombinant HA1 from an H1N1 G4 influenza strain also induced mucosal and systemic antibodies against influenza. Taken together, the data show that development of an intranasal SARS-CoV-2 vaccine based on recombinant RBD adjuvanted with a TLR3 agonist is feasible, also as a combination vaccine against influenza.


Subject(s)
COVID-19 Vaccines , COVID-19 , Influenza, Human , Animals , Humans , Mice , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Antibodies, Neutralizing , Antibodies, Viral , Clostridium perfringens , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Gastric Mucosa , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , M Cells , SARS-CoV-2 , Toll-Like Receptor 3
6.
Cell Rep ; 42(4): 112271, 2023 Mar 07.
Article in English | MEDLINE | ID: covidwho-2257202

ABSTRACT

In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum.

7.
Front Immunol ; 14: 1118523, 2023.
Article in English | MEDLINE | ID: covidwho-2253825

ABSTRACT

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence. Next generation vaccines that confer specific and targeted immunity to broadly neutralising epitopes on the SARS-CoV-2 spike protein against different variants of concern (VOC) offer an advance on current booster shots of previously used vaccines. Here, we present a targeted approach to elicit antibodies that neutralise both the ancestral SARS-CoV-2, and the VOCs, by introducing a specific glycosylation site on a non-neutralising epitope of the RBD. The addition of a specific glycosylation site in the RBD based vaccine candidate focused the immune response towards other broadly neutralising epitopes on the RBD. We further observed enhanced cross-neutralisation and cross-binding using a DNA-MVA CR19 prime-boost regime, thus demonstrating the superiority of the glycan engineered RBD vaccine candidate across two platforms and a promising candidate as a broad variant booster vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes , COVID-19 Vaccines , Polysaccharides , Antibodies, Neutralizing
8.
Vaccines (Basel) ; 11(1)2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2228548

ABSTRACT

Coronaviruses infections, culminating in the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic beginning in 2019, have highlighted the importance of effective vaccines to induce an antibody response with cross-neutralizing activity. COVID-19 vaccines have been rapidly developed to reduce the burden of SARS-CoV-2 infections and disease severity. Cross-protection from seasonal human coronaviruses (hCoVs) infections has been hypothesized but is still controversial. Here, we investigated the neutralizing activity against ancestral SARS-CoV-2 and the variants of concern (VOCs) in individuals vaccinated with two doses of either BNT162b2, mRNA-1273, or AZD1222, with or without a history of SARS-CoV-2 infection. Antibody neutralizing activity to SARS-CoV-2 and the VOCs was higher in BNT162b2-vaccinated subjects who were previously infected with SARS-CoV-2 and conferred broad-spectrum protection. The Omicron BA.1 variant was the most resistant among the VOCs. COVID-19 vaccination did not confer protection against hCoV-HKU1. Conversely, antibodies induced by mRNA-1273 vaccination displayed a boosting in their neutralizing activity against hCoV-NL63, whereas AZD1222 vaccination increased antibody neutralization against hCoV-229E, suggesting potential differences in antigenicity and immunogenicity of the different spike constructs used between various vaccination platforms. These data would suggest that there may be shared epitopes between the HCoVs and SARS-CoV-2 spike proteins.

10.
Oncologist ; 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2232285

ABSTRACT

INTRODUCTION: Patients with gastrointestinal (GI) cancers have an increased risk of serious complications and death from SARS-CoV-2 infection. The immunogenicity of vaccines in patients with GI cancers receiving anti-cancer therapies is unclear. We conducted a prospective study to evaluate the prevalence of neutralizing antibodies in a cohort of GI cancer patients receiving chemotherapy following SARS-CoV-2 vaccination. MATERIALS AND METHODS: Between September 2020 and April 2021, patients with cancer undergoing chemotherapy were enrolled. At baseline (day 0), days 28, 56, and 84, we assessed serum antibodies to SARS-CoV-2 spike (anti-S) and anti-nucleocapsid (anti-NP) and concomitantly assessed virus neutralization using a pseudovirus neutralization assay. Patients received either the Pfizer/BioNTech BNT162b2, or the Oxford/AstraZeneca ChAdOx1 vaccine. RESULTS: All 152 patients enrolled had a prior diagnosis of cancer; colorectal (n = 80, 52.6%), oesophagogastric (n = 38, 25.0%), and hepato pancreatic biliary (n = 22, 12.5%). Nearly all were receiving systemic anti-cancer therapy (99.3%). Of the 51 patients who did not receive a vaccination prior to, or during the study, 5 patients had detectable anti-NP antibodies. Ninety-nine patients received at least one dose of vaccine prior to, or during the study. Within 19 days following the first dose of vaccine, 30.0% had anti-S detected in serum which increased to 70.2% at days 20-39. In the 19 days following a second dose, anti-S positivity was 84.2% (32/38). However, pseudovirus neutralization titers (pVNT80) decreased from days 20 to 39. CONCLUSION: Despite the immunosuppressive effects of chemotherapy, 2 doses of SARS-CoV-2 vaccines are able to elicit a protective immune response in patients' ongoing treatment for gastrointestinal cancers. Decreases in pseudoviral neutralization were observed after 20-39 days, re-affirming the current recommendation for vaccine booster doses. CLINICAL TRIAL REGISTRATION NUMBER: NCT04427280.

11.
Sci Immunol ; 5(54)2020 12 23.
Article in English | MEDLINE | ID: covidwho-2161788

ABSTRACT

Understanding the nature of immunity following mild/asymptomatic infection with SARS-CoV-2 is crucial to controlling the pandemic. We analyzed T cell and neutralizing antibody responses in 136 healthcare workers (HCW) 16-18 weeks after United Kingdom lockdown, 76 of whom had mild/asymptomatic SARS-CoV-2 infection captured by serial sampling. Neutralizing antibodies (nAb) were present in 89% of previously infected HCW. T cell responses tended to be lower following asymptomatic infection than in those reporting case-definition symptoms of COVID-19, while nAb titers were maintained irrespective of symptoms. T cell and antibody responses were sometimes discordant. Eleven percent lacked nAb and had undetectable T cell responses to spike protein but had T cells reactive with other SARS-CoV-2 antigens. Our findings suggest that the majority of individuals with mild or asymptomatic SARS-CoV-2 infection carry nAb complemented by multispecific T cell responses at 16-18 weeks after mild or asymptomatic SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Asymptomatic Infections , COVID-19/immunology , T-Lymphocytes/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Case-Control Studies , Cross-Sectional Studies , Humans , SARS-CoV-2/immunology
12.
Cell Rep ; 42(1): 111903, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2158574

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor-binding domain (RBD). Here, we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared with BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection, which may explain the rapid spread in India, where where there is a high background of Delta infection. ACE2 affinity appears to be prioritized over greater escape.


Subject(s)
COVID-19 , Hepatitis D , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Antibodies
13.
Nature ; 593(7857): 136-141, 2021 05.
Article in English | MEDLINE | ID: covidwho-2114170

ABSTRACT

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant1, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b22. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/isolation & purification , COVID-19/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunization, Passive , Male , Middle Aged , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Synthetic/administration & dosage , COVID-19 Serotherapy
14.
Front Immunol ; 13: 842468, 2022.
Article in English | MEDLINE | ID: covidwho-2080127

ABSTRACT

The role of the mucosal pulmonary antibody response in coronavirus disease 2019 (COVID-19) outcome remains unclear. Here, we found that in bronchoalveolar lavage (BAL) samples from 48 patients with severe COVID-19-infected with the ancestral Wuhan virus, mucosal IgG and IgA specific for S1, receptor-binding domain (RBD), S2, and nucleocapsid protein (NP) emerged in BAL containing viruses early in infection and persist after virus elimination, with more IgA than IgG for all antigens tested. Furthermore, spike-IgA and spike-IgG immune complexes were detected in BAL, especially when the lung virus has been cleared. BAL IgG and IgA recognized the four main RBD variants. BAL neutralizing titers were higher early in COVID-19 when virus replicates in the lung than later in infection after viral clearance. Patients with fatal COVID-19, in contrast to survivors, developed higher levels of mucosal spike-specific IgA than IgG but lost neutralizing activities over time and had reduced IL-1ß in the lung. Altogether, mucosal spike and NP-specific IgG and S1-specific IgA persisting after lung severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance and low pulmonary IL-1ß correlate with COVID-19 fatal outcome. Thus, mucosal SARS-CoV-2-specific antibodies may have adverse functions in addition to protective neutralization. Highlights: Mucosal pulmonary antibody response in COVID-19 outcome remains unclear. We show that in severe COVID-19 patients, mucosal pulmonary non-neutralizing SARS-CoV-2 IgA persit after viral clearance in the lung. Furthermore, low lung IL-1ß correlate with fatal COVID-19. Altogether, mucosal IgA may exert harmful functions beside protective neutralization.


Subject(s)
COVID-19 , Interleukin-1beta/metabolism , SARS-CoV-2 , Antibodies, Viral , Antigen-Antibody Complex , Cross-Sectional Studies , Humans , Immunoglobulin A , Immunoglobulin G , Lung , Nucleocapsid Proteins , Spike Glycoprotein, Coronavirus
17.
J Infect ; 85(5): 545-556, 2022 11.
Article in English | MEDLINE | ID: covidwho-2007862

ABSTRACT

OBJECTIVES: To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection. METHODS: We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N). Results were analysed using fixed effect linear regression and fitted into conditional logistic regression models. RESULTS: We identified 23 cases and 92 controls. First infections occurred before November 2020; reinfections occurred before February 2021, pre-vaccination. Anti-S levels, LV-N and PV-N titres were significantly lower among cases; no difference was found for anti-N levels. Increasing anti-S levels were associated with reduced risk of reinfection (OR 0·63, CI 0·47-0·85), but no association for anti-N levels (OR 0·88, CI 0·73-1·05). Titres >40 were correlated with protection against reinfection for LV-N Wuhan (OR 0·02, CI 0·001-0·31) and LV-N Alpha (OR 0·07, CI 0·009-0·62). For PV-N, titres >100 were associated with protection against Wuhan (OR 0·14, CI 0·03-0·64) and Alpha (0·06, CI 0·008-0·40). CONCLUSIONS: Before vaccination, protection against SARS-CoV-2 reinfection was directly correlated with anti-S levels, PV-N and LV-N titres, but not with anti-N levels. Detectable LV-N titres were sufficient for protection, whilst PV-N titres >100 were required for a protective effect. TRIAL REGISTRATION NUMBER: ISRCTN11041050.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , Case-Control Studies , Humans , Reinfection/prevention & control , Vaccination
18.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1989357

ABSTRACT

Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens;DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1β, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.

19.
Commun Biol ; 5(1): 409, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1947504

ABSTRACT

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Subject(s)
COVID-19 , Chiroptera , Animals , COVID-19/therapy , Chiroptera/metabolism , Humans , Immunization, Passive , Membrane Glycoproteins/metabolism , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics , COVID-19 Serotherapy
20.
J Med Virol ; 94(10): 4820-4829, 2022 10.
Article in English | MEDLINE | ID: covidwho-1941180

ABSTRACT

The virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease-2019 (COVID-19) pandemic, spread rapidly around the world causing high morbidity and mortality. However, there are four known, endemic seasonal coronaviruses in humans (HCoVs), and whether antibodies for these HCoVs play a role in severity of COVID-19 disease has generated a lot of interest. Of these seasonal viruses NL63 is of particular interest as it uses the same cell entry receptor as SARS-CoV-2. We use functional, neutralizing assays to investigate cross-reactive antibodies and their relationship with COVID-19 severity. We analyzed the neutralization of SARS-CoV-2, NL63, HKU1, and 229E in 38 COVID-19 patients and 62 healthcare workers, and a further 182 samples to specifically study the relationship between SARS-CoV-2 and NL63. We found that although HCoV neutralization was very common there was little evidence that these antibodies neutralized SARS-CoV-2. Despite no evidence in cross-neutralization, levels of NL63 neutralizing antibodies become elevated after exposure to SARS-CoV-2 through infection or following vaccination.


Subject(s)
COVID-19 , Coronavirus NL63, Human , Antibodies, Viral , Cross Reactions , Humans , Pandemics , SARS-CoV-2 , Seasons , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL